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 This article investigates uplink massive MIMO system using 1-bit analog-to-digital 

converters (ADCs) and introduces a deep-learning-based framework for channel 

estimation. The proposed method utilizes prior channel estimation data together with 

deep neural networks to construct an advanced mapping from quantized received 

signals to their corresponding channel representations. To support this, the necessary 

pilot sequence length and structure are determined to ensure the feasibility of such a 

mapping function. It has been observed that by increasing the number of base station 

antennas enhances the performance of the deep learning-based channel estimation for 

a fixed pilot sequence length. Alternatively, for a preferred channel estimation 

performance, smaller number of pilot sequences is desirable as the number of 

antennas increases. This observable has been analytically demonstrated for specific 

channel models. Simulation results validate these findings, revealing that a high 

number of antennas improve channel estimation performance in terms of predicted 

signal to noise ratio per antenna and normalized mean squared error. 
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1. Introduction 

Massive multiple-input multiple-output 

(MIMO) has emerged as a revolutionary 

technology for 5G and beyond, contributing 

significant gains in throughput and energy 

efficiency compared to conventional MIMO 

systems [1][2]. However, deploying massive 

MIMO systems with large numbers of antennas at 

the base station requires an equally large number 

of radio-frequency (RF) chains, which radically 

increases hardware complexity and power 

consumption [1][2]. A hopeful approach to 

mitigate these challenges is the use of low-

resolution analog-to-digital converters (ADCs), 

including 1-bit ADCs. These ADCs are highly 

energy-efficient and simpler in structure, making 

them a smart choice for practical implementations 

[3][4][5]. 

Despite their rewards, low-resolution ADCs 

introduce severe nonlinearities due to signal 

quantization, considerably complicating tasks 

such as data detection and channel 

estimation[4][5]. Conventional channel estimation 

methods often require long pilot sequences, which 

enforce substantial overhead and limit their 

practicality in large-scale systems. To address 

these challenges, researchers have projected a 

variety of approaches, ranging from classical 

signal processing techniques to machine learning-

based solutions [6-9]. However, these methods 

either demand extensive training overhead or are 

limited to small-scale systems or low-dimensional 

constellations. In [10], the authors proposed a 

lightweight and effective strategy to reduce the 

overhead of downlink channel estimation and 
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feedback by utilizing linear regression (LR) and 

support vector regression (SVR) within a machine 

learning framework. The problem of channel 

estimation becomes particularly critical in 

beamspace millimeter-wave massive MIMO 

systems, especially when the receiver is 

constrained by a limited number of radio-

frequency (RF) chains [11]. To overcome this 

limitation, an efficient online CSI prediction 

scheme, termed OCEAN, was introduced in [12]. 

This framework exploits historical channel data to 

predict future channel states, thereby enhancing 

the efficiency of 5G wireless communication 

systems. 

The main objective of this study is to apply 

deep learning to address the difficulties associated 

with channel prediction in large MIMO systems 

with 1-bit ADCs. Therefore, a deep learning-based 

framework is presented (a novel approach) and 

tailored to estimate channels from quantized 

measurements, in contrast to previous work that 

focuses primarily on data detection or depends on 

assumptions like full-resolution ADCs or 

constrained system dimensions. Our approach not 

only reduces the dependence on long pilot 

sequences but also reveals an interesting finding: 

increasing the number of antennas at the base 

station can develop channel estimation 

performance while requiring fewer pilot symbols. 

This counterintuitive result, which has been 

demonstrated analytically and verified by 

simulations, highlights the prospective of 

combining low-resolution ADCs with advanced 

deep learning techniques to open the full benefits 

of massive MIMO systems. To optimize the 

model's effectiveness, hyper-parameters are better 

tuned using three optimization algorithms namely 

Adaptive moment estimation (Adam), root mean 

square propagation (RMSprop) and stochastic 

gradient descent with momentum (SGDm) during 

training. As a result, the ideal parameter settings 

are recognized that substantially improve the 

efficiency of channel estimation performance. 

The rapid growth of the massive MIMO 

systems on one hand enables high data rates and 

connectivity but on the other hand presents 

significant challenges related to energy 

consumption. Traditional channel estimation 

methods, such as MMSE and LS, require many 

pilot signals and intensive computational 

resources which may lead to an increased transmit 

energy, a higher processing power demands at the 

base station, and an inefficient spectrum use. This 

research introduces a deep learning-based 

approach to address these limitations. By utilizing 

the learning capabilities of the neural networks to 

accurately estimate the channel state information 

(CSI) with significantly fewer pilots, not only 

reduce pilot overhead has been reduced but the 

transmission energy has also lowered the 

computational load. Thus, resulting in a more 

energy-efficient system. This green approach to 

wireless communication has directly contributes 

to a reduced carbon footprint, less RF pollution, 

and the sustainable deployment of the 

technologies for smart cities and IoT applications. 

Thus, the article aligns with the broader global 

goals for the environmental protection and 

sustainable energy use. 

 

2. Theoretical background 

 

2.1. System architecture 

The described system involves a massive 

MIMO base station (BS) equipped with M 

antennas, communicating with K single-antenna 

user equipments (UE). The BS employs 1-bit 

analog-to-digital converters (ADCs) in the 

receiver unit. The system operates in a time-

division duplexing (TDD) mode, where uplink 

channel learning is used to estimate the channel, 

which is then utilized for downstream data 

communication. The uplink involves the UE 

transmitting a pilot sequence (x ∈ N×K), where N 

denotes the pilot sequence length [13][14]. After 

the ADC quantization, the received signal at the 

BS can be represented as: 
 

Y = sgn(hxT+w) (1) 
 

 
Figure 1. Massive MIMO architecture 

 

Where h ∈ M×K is channel vector between 

the base station antennas and the user equipment, 

w ∈ (0,σ2) is the AWGN noise. The transmitted 

pilot sequence achieves E[xxH] = PtI with Pt as the 

average transmit power per symbol. The received 

signal Y is the MxN quantized estimation matrix 

consisting of the obtained pilot signals. 

 

2.2. Channel model and estimation 

The channel model assumes that the signal 

transmission between the user and the base station 
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(BS) occurs via L paths, each characterized by a 

complex gain 𝜃𝑙  and an angle of arrival 𝜑𝑙 . The 

channel vector h is expressed as: 

 
h = ∑ 𝜃𝑙

𝐿
𝑙=1 a(𝜑𝑙) (2) 

 

where a (𝜑𝑙) represents the BS's array 

response vector for the angle of arrival. 

For channel estimation, the BS processes the 

quantized received signal matrix Y to construct an 

estimated channel vector ĥ. The TDD mechanism 

ensures channel reciprocity, allowing the uplink 

channel estimation to support both uplink and 

downlink operations. This setup enables efficient 

communication despite the 1-bit ADC constraint 

by leveraging uplink pilot sequences for channel 

estimation. 

Considering the estimated channel vector, the 

downlink beamforming vector f is designed using 

conjugate beamforming, expressed as f =
ĥ∗

‖ĥ‖
 . 

With this approach, the downlink SNR per 

transmit antenna can be expressed as: 

 

SNRant =
γ

M

|ĥHh|
2

‖ĥ‖
2  (3) 

 

This paper explores the development of an 

efficient channel estimation approach to 

reconstruct the channel vector h from the 

exceedingly quantized received signal Y. Our 

objective is to create a channel estimation method 

that minimizes the normalized mean-squared error 

(NMSE) between the estimated and actual 

channel vectors, which is defined as follows, 

assuming that the base station (BS) is aware of the 

pilot sequence x: 

 

NMSE = E [
‖h − ĥ‖

2

‖h‖2
] (4) 

 

The term ‖h − ĥ‖
2

 represents the squared 

difference between the actual value h and its 

estimated value ĥ  while E denotes the expected 

value function. 

 

3. DL based channel estimation 

Traditional channel estimation (CE) methods 

for massive MIMO systems among low-resolution 

ADCs often rely solely on quantized received 

signals, ignoring prior observations. These 

methods, such as those discussed in previous 

studies, estimate the channel directly from these 

signals. However, channel characteristics are 

inherently influenced by environmental factors 

like geometry, materials, and transmitter/receiver 

positioning. Consequently, base stations (BSs) 

operating in similar environments are likely to 

encounter comparable channel conditions 

repeatedly. This insight suggests that leveraging 

prior experience can reveal the relationship 

between quantized received signals and channels, 

potentially reducing the required pilot length. This 

study proposes employing deep learning model to 

align quantized received measurements to the 

channel vector while using shorter pilot 

sequences. By learning from prior channel data, 

the proposed method aims to minimize the NMSE 

between the estimated and true channels. 

Additionally, scaling the quantity of antennas 

in massive MIMO systems is observed to decrease 

the required pilot length. Prior research highlights 

correlations between channels of adjacent 

subcarriers, which can degrade performance if 

pilots are simultaneously assigned to these 

subcarriers. To mitigate this, the proposed 

approach seeks to enhance diversity and reduce 

subcarrier correlation while maintaining efficient 

channel estimation. 

 

3.1. Connecting quantized measurements to 

channels 

Consider an indoor or outdoor configuration 

where a single-antenna user is served by a 

massive MIMO base station (BS), as outlined 

above. Let h represent the set of potential 

channels for the user, determined by the user's 

possible locations and the surrounding 

environment. Additionally, let Y denote the 

corresponding quantized measurement matrices 

associated with the channel set h and a given pilot 

sequence x. The relationship between the 

quantized measurement matrices and the 

channels, represented by 𝜓: {𝑌}
 

→ {ℎ} . If the 

mapping between the quantized measurement 

matrix Y and the channel vector h is established 

and known, it can be utilized to predict h. Thus, 

the goal is to confirm the existence of this 

mapping by using Postulate 1 and to describe the 

process to help us better comprehend it. 

Postulate 1: The channel and the system 

model for the suggested study, as discussed 

earlier, are considered as: 
 

h = ∑ θl
L
l=1 a(φl) (5) 

  

Y = sgn(hxT+w) (6) 
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In above equation, if the value of w is 

assumed as zero. With the potential channels h, 

the angle 𝜃 can be defined as  
 

θ =
min

∀hu, hv

u ≠ v
∈ {h}

max
∀m

|∠[hu]m − ∠[hv]m| (7) 

 

The mapping function ψ (.) exists if the pilot 

sequence x is built with a length N that satisfies N 

≥ π /2𝜃 and the uniformity of the pilot complex 

symbols' angles sample the range [0, π/2]. 

According to Postulate 1, when the pilot 

sequence is created using the precise framework 

described in the postulate, a one-to-one mapping 

ψ(.) exists, enabling the quantized measurement 

matrix Y to predict the channel h. Notably, only a 

small number of pilot symbols (a very small N) 

are required in massive MIMO systems to 

establish this mapping ψ(.) with high probability. 

This can significantly reduce channel training 

overhead compared to traditional 1-bit ADC 

channel estimation methods. 

However, utilizing this mapping function 

requires knowledge of its structure, which is 

challenging to determine analytically due to the 

complexity of the non-linear quantization process. 

To address this, we propose leveraging the 

advanced learning capabilities of deep neural 

networks to learn this mapping, unlocking the 

potential to considerably minimize channel 

training overhead. The next subsection highlights 

the suggested deep learning-based 1-bit ADC 

channel estimation method in massive MIMO 

systems. 

 

3.2. Proposed model 

To use deep learning's potent capabilities, 

more especially, fully-connected neural network is 

chosen to convert the quantized incoming signal 

back into complex-valued channels. These 

networks are recognized for their effectiveness as 

function approximators, and thus, we propose and 

train a dense neural network to discover the 

mapping from quantized measurements to the 

corresponding channels. 

Network model and training: The designed 

network consists of three dense layers. The first 

two layers are wide and include a fully-connected 

layer, a non-linearity layer, and a dropout layer, 

with each fully-connected layer containing LNN 

neurons followed by ReLU (rectified linear unit) 

activations. The final output layer consists of a 

fully-connected layer with 2M neurons. The 

network is framed as a regression problem, 

aiming to estimate user channels by minimizing 

the NMSE loss function, which measures 

prediction accuracy. The network is trained using 

the ADAM optimizer, with the average NMSE 

minimized over training. 

Data pre-proccesing and preparation: For 

effective learning, the network inputs and outputs 

are pre-processed prior to training. The first step 

involves normalizing the channels in both the 

training and testing datasets to the range [−1,1], 

by means of the maximum absolute channel value 

from the training set. This normalization has 

proven effective in previous studies. The second 

step involves vectorizing the quantized received 

measurement matrices into MN×1 vectors. Since 

most deep learning frameworks work with real-

valued computations, the channel and 

measurement vectors are then split into real and 

imaginary components and flattened into 2M×1 

and 2MN-dimensional vectors, respectively. 

The simulation utilizes the I1_2p4 indoor 

massive MIMO scenario from the DeepMIMO 

dataset, which is generated using Wireless InSite 

the 3D ray-tracing simulator. This scenario 

features users positioned on two x-y grids within a 

10m×10m indoor space containing two tables, 

operating at 2.5 GHz. The dataset includes 

channels between potential user locations and 

antennas at the base station (BS)[16-18]. 

Key settings for the DeepMIMO scenario are 

as follows: 

• Scenario: I1_2p4 

• 32 active BS antennas located at (1, 100, 1) 

in (x,y,z) coordinates 

• 502 active users (row 1 to 502) 

• System bandwidth: 0.01 GHz 

• Single-carrier OFDM (1 sub-carrier) 

• 10 multipaths  

The dataset is shuffled and split into 70% for 

training and 30% for testing. Training datasets are 

generated for signal-to-noise ratio (SNR) values 

ranging from 0 to 30 dB, divided into seven 

intervals: 0, 5, 10, 15, 20, 25, and 30 dB. These 

datasets are then used to train the deep learning 

model, and the proposed model's efficacy is 

evaluated. 

 

4. Results and observations 

In this section, the effectiveness of the 

suggested deep learning-based channel estimation 

(CE) technique for large MIMO systems with 1-

bit ADCs is assessed. The approved scenario, 

chosen dataset, and simulation parameters are 

outlined, followed by a discussion of the results. 

The suggested model outperforms other methods 
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in a variety of simulated scenarios by utilizing the 

deep neural network's sophisticated learning and 

sequence prediction capabilities. 

Training and Testing of suggested model: 

Two hidden layers of a fully-connected network 

with 8192 neurons each are used in our 

simulations. The quantity of base station (BS) 

antennas and pilot symbols determines the size of 

the input and output layers. For instance, the input 

size is 1000 and the output size is 100 when 50 

antennas and 5 pilot symbols are used. Training 

samples are organized as (y, h) where y represents 

the input and h the target channel, with each 

sample equivalent to a randomly selected user 

from two grids. 

The network is trained on 105,981 samples 

for 100 epochs, with noise added during training 

across an SNR range of 0–30 dB. To ensure fair 

comparisons, the network structure and training 

parameters remain consistent across simulations, 

except for input and output dimensions. The 

training process utilizes the Adam optimizer and 

explores various learning rates and minibatch 

sizes. All simulations are conducted in MATLAB 

R2020a on a system with a 12th Gen Intel Core 

i7-12700 CPU and an Nvidia RTX 3060 GPU. 

Now, we test the effectiveness of our 

suggested deep learning-based channel estimate 

technique in the context of uplink massive MIMO 

discussed in previous sections. 

Effect of pilots: Figure 2 highlights that the 

NMSE performance of the proposed solution 

improves significantly with an increase in the 

number of antennas at the base station (BS). 

During this evaluation, noise samples are added to 

the measurement matrices used in both the 

training and testing phases of the suggested 

model. In Fig.2, with pilot length N=3, the NMSE 

progressively improves relative to the number of 

antennas M. A similar pattern is observed for pilot 

lengths N = 5, 7 and 10 where the NMSE 

performance shows further improvement 

compared to N=3, particularly for lower values of 

M. This enhancement enables highly accurate 

channel predictions using only a small number of 

pilot symbols (N), setting it apart from traditional 

channel estimation methods like expectation-

maximization Gaussian-mixture generalized 

approximate message passing (EM-GM-GAMP). 

As in wireless communication systems, pilot 

symbols are essential for estimating the channel 

state information (CSI), but they consume 

valuable bandwidth and reduce spectral efficiency 

if used in large quantities. Traditional channel 

estimation methods, such as Expectation-

Maximization Gaussian-Mixture Generalized 

Approximate Message Passing (EM-GM-GAMP), 

generally require a larger number of pilots to 

maintain reliable estimation accuracy. This makes 

them less efficient in scenarios where minimizing 

pilot overhead is critical, such as massive MIMO 

systems with hundreds of antennas. 

In contrast, the deep learning-based model 

presented here effectively captures the underlying 

nonlinear mapping between quantized pilot 

measurements and the actual channel coefficients. 

By learning this complex relationship directly 

from data, the model can operate reliably with 

significantly fewer pilot symbols while still 

maintaining (or even surpassing) the accuracy of 

traditional methods. 

For the adopted dataset, the minimum 𝜃 (in 

radians) calculated using Equation (7) is 

3.07×10−5 for a system with 3 antennas and 

0.2476 for a system with 100 antennas. This 

demonstrates the potential of the deep learning-

based approach, which achieves accurate channel 

estimation with very short pilot sequences in 

massive MIMO systems. Additionally, while 

Postulate 1 indicates a large pilot requirement for 

full bijectiveness in systems with fewer antennas, 

the proportion of channels requiring extended 

pilots is minimal. For instance, with just 5 pilots, 

98% of the dataset's channels are distinguishable, 

increasing to 99.5% with 10 pilots. These results 

explain the effectiveness of the proposed solution 

even with limited pilots. 

 

 
 

Figure 2. NMSE vs Number of antennas 
 

Figure 3 examines the SNR per antenna, as 

defined in Equation (3), for various pilot lengths 

and antenna numbers, with a fixed received 

measurement matrix SNR of 0 dB. Despite a 

plunge in performance for systems with a small 

number of antennas, the predicted SNR per-
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antenna approaches the upper bound as the 

antenna count increases. This upper bound is 

achieved using a conjugate beamformer designed 

with exact channel knowledge, even with only 3 

pilots (N=3). The performance results reveal a 

noticeable dip in accuracy for smaller antenna 

counts (particularly when the pilot length is 

limited to N = 3 or N = 5). This degradation can 

be attributed to a mismatch between the total 

Signal-to-Noise Ratio (SNR) improvement and 

the rate of antenna increase. In simpler terms, 

when the number of antennas is still small, the 

gain in overall SNR does not fully compensate for 

the limited amount of pilot information, which 

leads to a less reliable channel estimation. 

However, this performance dip gradually 

diminishes as either the pilot length (N) or the 

number of antennas (M) increases. With more 

pilots, the system obtains additional reference 

information about the channel, which reduces 

ambiguity in the estimation process. Similarly, 

increasing the number of antennas enhances 

spatial diversity, which improves the robustness of 

the mapping between the observed quantized 

signals and the underlying channel characteristics. 

 

 
 

Figure 3. Predicted SNR vs Number of antennas 
 

Effect of Optimization algorithms: 

Selecting the optimal optimization method for 

addressing a specific problem is a complex task. 

Achieving the best performance for the channel 

estimation (CE) model with minimal pilot 

overhead requires evaluating the effectiveness of 

various optimization techniques for the given 

model and dataset. This section compares three 

optimization methods to identify the most suitable 

approach for CE issues: Adaptive moment 

estimation (Adam), Root mean square 

propagation (RMSprop), and Stochastic gradient 

descent with momentum (SGDm) [14][15]. 

Figure 4 presents the NMSE performance of 

the suggested model with these three optimization 

techniques, evaluated across varying numbers of 

antennas (M) and pilot configurations (N=5 and 

10). For antenna sizes upto M=20, both Adam and 

RMSprop show nearly identical NMSE 

performance across pilot lengths. In contrast, 

SGDm lags behind, with noticeably worse 

estimation accuracy. Additionally, for pilot length 

N=5, the performance of Adam and RMSprop 

show comparable results, meaning both 

optimizers are effective with a limited number of 

pilots. While for pilot length N=10, Adam 

consistently outperforms both RMSprop and 

SGDm across all antenna sizes, achieving the 

lowest NMSE values. Therefore, the Adam 

optimizer has been chosen for all of the 

simulations due to its reliable and excellent 

performance. 

 

 
 

Figure 4. NMSE performance of the proposed 

model 
 

5. Conclusion 

This research paper presents a deep learning-

based channel estimation (CE) framework for 

massive MIMO systems using 1-bit analog to 

digital converters (ADCs). The study determines 

the structure and minimum length of pilot 

sequences (PS) required to ensure a mapping from 

quantized measurements to channels, showing 

that fewer pilots are needed as the number of 

antennas increases. Both analytical and extensive 

simulation results confirm that only a small 

number of pilots are sufficient for efficient 

channel estimation, with achievable signal to 

noise ratio (SNR) per antenna approaching the 

upper bound as antennas scale up. To further 

enhance performance, different deep learning 

optimizers (such as SGD, Adam, and RMSProp) 

are utilized that provide the highest accuracy with 

the least pilot overhead. The system’s 
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performance was evaluated in terms of 

normalized mean square error (NMSE) and SNR 

per antenna, under various pilot lengths and 

antenna counts. Results consistently indicated that 

the proposed DL-based CE outperformed 

conventional methods, especially in low-

resolution ADC scenarios. Future research could 

extend this approach to broadband systems with 

frequency-selective channels and explore CE in 

continuous angle spaces.  
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